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Building a Lane Merge Coordination for Connected
Vehicles Using Deep Reinforcement Learning

Omar Nassef, Luis Sequeira, Elias Salam, and Toktam Mahmoodi

Abstract—This paper presents a data-driven framework for
trajectory recommendation in automated and cooperative driv-
ing. The considered cooperative driving manoeuvre is lane-merge
coordination, and while the trajectory recommendation can only
be communicated to the connected vehicles, in computation of
those recommendations both connected and unconnected vehicles
are taken into account. The data-driven framework is imple-
mented centrally, comprising of two main components of a Traffic
Orchestrator and Data Fusion. The Traffic Orchestrator predicts
the safest trajectories for connected vehicles involved in the lane-
merge manoeuvre. The Data Fusion incorporates camera detected
vehicles in order to map all vehicles including connected and
unconnected. To this end, the recommendations are built using
various state-of-the-art machine learning techniques including
deep reinforcement learning and dueling deep Q-network. Our
evaluations are conducted using the real-system deployed in the
test track, with a mix of connected and unconnected vehicles.
The results demonstrate precision of predicted trajectories, and
percentage of successful lane merge achieved deploying different
machine learning techniques.

Index Terms—Lane merge, intelligent transport system, V2X
communications, reinforcement learning, machine learning.

I. INTRODUCTION

Intelligent Transport System (ITS) enables the generation
of extensive and detailed data relating to vehicles in addition
to the environment of their operation. This data can be used
to improve road safety and provide better driving experience.
Connected vehicles are capable of transmitting and receiving
information in order to contribute to this data pool, but also
to fully benefit from exploitation of such data. Additionally
connected vehicles together with the road infrastructure shape
the Internet of Things (IoT) network to enable the intelligent
transportation infrastructure [1], [2]. Associations such as the
European Telecommunications Standards Institute (ETSI) and
5G Automotive Association (5GAA) have promoted the use of
cellular Vehicle-to-Everything (V2X) communications in order
to enhance road safety, traffic efficiency, reduce environmental
issues and energy costs [3]. Due to the advancements in
5th Generation Mobile Network (5G) and V2X, many use
cases and applications are under research and development for
cooperative driving such as cooperative collision avoidance,
high density platooning and cooperative lane merge [4] [5].
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In this paper, we focus on cooperative lane merge scenario
where a vehicle is merging into a carriageway between two
vehicles. The proposed coordination model is based on a
centralised system which is analysed and evaluated in detail.
Reinforcement Learning (RL) is used by the system in order
to deliver trajectory recommendations to connected vehicles,
accounting for all surrounding vehicles (i.e., connected and
unconnected). Time-critical variables such as location, speed
and acceleration are used as input to the deep reinforcement
learning model. Furthermore, two different RL algorithms are
presented and evaluated to ascertain whether a merging vehicle
can perform a manoeuvre safely. Additionally, results from the
optimal model tested on real connected vehicles on the test
track [6] are described. The contributions of this paper are as
follow:

• A Traffic Orchestrator (TO) model based on a centralised
system, that delivers trajectory recommendations to con-
nected vehicles.

• Performance evaluation of two different RL approaches:
Dueling Deep Q-Network (Dueling DQN) and Deep Q-
Network (DQN). The models explore different reward
functions, utilising Newtonian Law of Motion equations
for trajectory recommendations.

• A comparison between the different RL models with
state-of-the-art Machine Learning (ML) models for lane
merging.

• Contrast between best performing RL model with human-
recorded trajectories, with respect to acceleration, inter-
vehicle safety distance and way-point position

• A Data Fusion (DF) model that synergies the centralised
micro service oriented architecture, delivering descriptors
of connected and unconnected vehicles to the TO.

Two different algorithms presented in this work are thor-
oughly explored: DQN and Dueling DQN. The Dueling
DQN showed the most optimal results, providing human-like
trajectories with very low bias. The inter vehicle distance,
acceleration, individual positions and manoeuvre distance in
trajectory recommendation are evaluated extensively to deduce
the performance of incorporating such model.

This paper is organised as follow: Section II shows the
State-of-the-Art gauging the different RL approaches and other
methods for lane merge algorithms. Section III provides the
general system model, while section IV describes the decisions
taken in the formulation of the RL model. Section V outlines
the necessity and integration of the microservices on the pro-
posed architecture. The analysis of the the deep RL algorithms
is explored in section VI on the data-set it was trained on.
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This section also describes the real world scenario and tests
with the accompanying obtained Key Performance Indicators
(KPIs). Finally, we draw the conclusion and highlight some
future works in section VII.

II. STATE OF THE ART

A. Lane merge coordination

Vehicles have gained intelligence as self-driving capabilities
have increased significantly in the previous years. Cruise
Control, Lane Following and assisted large lateral control
manoeuvres, such as lane changes appeared paving a way for
progression towards topics like Cooperative Adaptive Cruise
Control (CACC) for lane change and merge [7]. In this context,
there are several situations that impact vehicle behaviour,
such as weather, road grade or surrounding vehicles. In this
work we will focus on a lane merge scenario and the impact
of surrounding vehicles (connected and unconnected) on the
merging vehicle.

In order to perform a collision free merge, a certain safety
distance between the merging vehicle and the other vehicles
should be enforced. However, a problem arises when there is
not a sufficient gap between vehicles on the merging lane for
the merging vehicle. In this situation there are a few possible
options for the merge to occur: the merging vehicle could
decelerate or stop completely to avoid collision, then wait for a
an ideal gap to merge. On the other hand, vehicles on the main
lane could slow down, speed up or even merge onto a third lane
if possible generating ample merging space. Therefore, a lane
merge coordination algorithm is needed to perform actions on
merging vehicles providing successful and safe merges [8].

In [9], a simulation of a lane merge scenario was carried
out, accompanied by a pattern recognition model for decision-
making. The model consisted of a nine grid cell, in which
each cell is marked as empty or occupied according to the
information received from neighbouring vehicles. The trajec-
tory of the merging vehicle was fitted into a 5° polynomial
function. The simulation provides different trajectory models
using different actions such as acceleration, deceleration and
wait to command the vehicle into the optimal merging point.

Function models to evaluate decision on lane merge have
also been explored and built. In [10], a low-complexity lane
merge algorithm was presented, determining the viability of a
lane change manoeuvre, where a gap and time slot is selected
to preform the lane merge. The mathematical models that
calculate longitudinal and lateral control trajectory, depended
on weightings to reach its optimal behaviour. However, the
authors reiterated the need of a dynamic prediction model in
situations where the trajectory was aborted or the scenario did
not match the optimal weighting given.

A similar approach was used in [11], where the focus was
to ensure optimal road space for when the lane change occurs.
Thus, a two lane road was divided into cells, that can be empty
or containing a vehicle, with the applicable four different
actions for vehicles: acceleration, deceleration, random action,
and maintaining vehicle motion. Three types of lane changes
were investigated: tail to head, head to tail, and random. The
tail to head approach resulted in superior results when being

compared to a random lane merge. The approach assumes that
all vehicles on the road are connected, such that they can
communicate among themselves. Differing between a realistic
scenario where the time and gaps between the vehicles are
essential for a lane merge, as well as the connectivity of all
the vehicles on the road.

In [12], the authors presented a collision prevention system
based on fuzzy logic control to update the acceleration or
deceleration of vehicles, in order to improve the lane change
safety. The system performance was tested using simulated
relative distance and speed measured from a radar. The al-
gorithm assumes that the merging vehicle can merge and
only provides acceleration control to avoid collisions with
the vehicle in front of it. Furthermore, [13] a simulation was
performed to obtain the desired steering angle and longitudinal
acceleration to maintain an automated driving vehicle. In this
case a stochastic model-predictive control was used, however
behaviour of surrounding vehicles was predicted by means of
a probabilistic collision detection.

Another approached tackling lane merging utilised a repre-
sentation of the on-road environment (Dynamic Probabilistic
Drivability Map), presented in [14]. The automotive test bed
included cameras, radars and lidar sensing. Delivering cost ef-
fective recommendations based on dynamic programming. The
theoretical formulation of this work was tested with data from
40 real-world merges. Although the approach is considered
early stage. In [15], the authors consider a transition stage in
the path to fully autonomous transport, with mixed-autonomy
driving. In the study, a mixed-autonomy driving is considered
as a collaboration of vehicles resembling a Nashor Equilibrium
state, to ensure that the collective reward for lane merging is
optimal. The approach simulated the role of a driver via a
keyboard.

B. Reinforcement and Deep Learning for lane merge

Using machine learning is by no means a new approach
to tackle lane merge prediction. In [16] the authors suggested
the use of dynamic probabilistic drivability map. The problem
was framed in an optimisation scope, reducing the cost of
a lane change and merge scenario. The model was testing
against free-flow and dense traffic, in a real world scenario,
providing an insight in the adaptability of the model in the
current status of the road. Although, as expected the different
scenarios brought by sparse environmental conditions for the
model to deal with, which is in need of fine-tuning to the
specific lane merge scope the model operates in.

There are a few studies applying RL or other learning
techniques to connected vehicles. In [17], a work-in-progress
for an on-ramp merge driving policy using Long Short-
Term Memeory (LSTM) architecture with Deep Q-Learning
was presented. The scenario considers an on-ramp merging
involving three vehicles: the merging vehicle and two vehicles
on the mainline. A total of 9 variables are used: for the merging
vehicle, 5 variables describe its driving state (speed, position,
heading angle, and distances to the right and left lane). For
the other two vehicles, only speeds and positions are known.
The algorithm has not been verified or validated.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3017931

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

A deep RL approach was adopted in [18], handling input
values from camera and laser sensor the vehicle owns with an
embedded GPU for decision making. The work also proposes
a monolith architecture embedded in the vehicle, and does not
consider a micro service approach in which the connected and
unconnected vehicles can co-exist in the same scenario. Lastly,
every vehicle that includes the equipment specified would have
to generate the calculations multiple times, making it more
costly albeit running in real-time.

Research has also been carried out about the functionality
and challenges of incorporating Deep Learning into vehicles.
[19] discusses the strict assessment that needs to be undertaken
before the use of Deep Learning can be considered and
commercialised in autonomous vehicles. Challenges included
dataset completeness, Neural Network implementation and the
transfer of learning. These challenges remain to this day and
are great hurdles when designing and implementing a Deep
Learning approach for vehicles. It is clear that reproducing
similar results in different environments from research papers
seldom work. Both intrinsic (e.g. hyper-parameters) and ex-
trinsic factors (e.g. environment) influence the performance
of the agent albeit using the same approach that papers
have undertaken. Therefore, suggesting that the use of RL
is experimental and relative to the scenario that the agent
operates as also seen by [20].

Other approaches propose the use of Artificial Intelligence
(AI) for Lane Changing excluding the application deep learn-
ing, As seen in [21]. Where the authors propose the use of
Bayes Classifiers and Decision Trees to predict whether or
not a vehicle can merge. Although the results proved accurate
in some cases, the approach did not detail the lane merge
trajectory that should be used to execute such a manoeuvre
that would result in a safe lane merge. Hinting that the use of
non deep-learning AI may not capture all the environmental
states necessary to learn and produce a safe trajectory for a
lane merge scenario.

There are some challenges when applying RL to deploy
a Lane Merge Coordination system. RL is the study of the
agent’s ability to interact with an environment whilst accu-
mulating the highest reward possible. Balancing the phases
of exploration and exploitation with respect to the accumu-
lation of rewards is difficult to determine. This problem is
uniquely unidentified with RL and does not necessarily apply
to other learning branches. The exploration phase, cannot be
summarised or terminated quickly, as this would impact the
safety of the road and human lives. In a critical scenario
such as a lane merge, it is of vital importance that the
total safety of the merge and road is the main goal, and
hence the learning phase may be prolonged compared to other
applications of RL (e.g., gaming or stocks), in order ensure
such an outcome is obtained. The Bellman equation [22] only
guarantees a convergence for an optimal value function if
every state is visited infinite number of times. A large amount
of data would be needed in order to simulate visiting the
states an infinite number of times, obviously infeasible due to
time constrains. However, with some work done in function
approximation, the reward can be calculated with the state
and action only, thus minimising the storage needed to hold

Fig. 1. In the lane merge coordination scenario, a connected vehicle attempts
to merge onto the main lane while the edge cloud coordination system
determines and sends trajectory recommendations to connected vehicles.

the infinite sets of combinations, which is where the deep
learning component alleviates the problem by generalising the
approximation function. Reward function also provides a way
for the agent to prioritise tasks codifying necessary behaviour
to an agent, which is vital for an optimal function to be learned
[23]. In terms of the RL architecture and implementation, this
paper focuses on the design and performance of the reward
function.

III. ARCHITECTURE AND SYSTEM MODEL

This section provides the high-level architecture and the
system model for a centralised coordination system. This
system plans the trajectories for connected vehicles on the
road to ensure sufficient space for a merging vehicle.

A. Lane merge coordination

The lane merge scenario examined in this work is depicted
in Fig. 1. A connected vehicle will attempt to merge onto
a main lane where connected and unconnected vehicles are
present. Through an edge cloud approach, bespoke trajec-
tory recommendations are determined and sent by central
coordination mechanism to connected vehicles. Five distinct
components facilitate the lane merge coordination: a V2X
Gateway, an Image Recognition system, a GDM, a DF and
a TO.

The V2X Gateway is responsible for forwarding messages to
the various applications and interfaces in the architecture. The
V2X Gateway acts as a communication medium that connects
the interfaces and applications to connected vehicles based
on a publish-subscribe message exchanging approach. This
method of communication occurs across a mobile network.
Applications must subscribe to the V2X Gateway to receive
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TABLE I
MESSAGES USED IN THE LANE MERGE COORDINATION.

Message Description

Road User Description A Road User Description (RUD) contains the information relating to a specific vehicle. This is the information that
is captured by the Image Recognition system or sent directly by the connected vehicle encompassing trajectory
and localisation data. This is used to sync the real environment with the architecture.

Notification A notification is used, to established a subscription and on-going messaging service with the orchestrator.
Notification messages are sent from the Global Dynamic Map (GDM) to the Vehicle-to-Everything (V2X Gateway)
for synchronisation and onto the TO. The notification messages include the crucial information that is required
to provide trajectory recommendations not limited to but containing RUD of all vehicles.

Manoeuvre Recommendation A manoeuvre recommendation is used to send trajectory recommendations. A trajectory recommendation contains
the individual points constituting to a manoeuvre that a road user should execute.

Manoeuvre Feedback A manoeuvre feedback provides the traffic orchestrator with the response in order to check if the manoeuvre
recommendation is accepted, rejected or aborted.

Subscription Request The first step of messaging process is to form a subscription request message. After which the TO can start
receiving RUDs.

Subscription Response Once the V2X Gateway receives a subscription request, a response is made by the V2X Gateway back to the TO.
Unsubscription Request This is sent from the TO to the V2X Gateway to unsubscribe from the notification service.
Unsubscription Response The purpose of this is to confirm a successful disconnection from the notification messages.
KPI message This message is sent from each component every time it receives or sends a message. These messages are received

by the KPI evaluation platform to calculate the efficiency of the system.

messages about vehicular features and trajectory information.
The mobile network seeks to maintain a set of baseline
requirements.

An Image Recognition system [24] collects information
about all the vehicles on the road in a specified area. This
information includes the localisation and trajectory-based pa-
rameters attributed to a specific road user RUD. Information
about connected and unconnected vehicles are collected and
processed sending all the information to the V2X Gateway,
which in turn forwards the messages to the GDM. The GDM
stores environmental information about connected and uncon-
nected vehicles in a database. This information is delivered
from the V2X Gateway system. The GDM ensures that stored
RUDs are up to date.

The DF provides a synchronisation mechanism for RUDs
originating from different sources (e.g., one from the Image
Recognition system and a connected vehicle in a closely
localised time frame, respectively). The DF updates the in-
formation in the GDM to be dispatched to applications that
are subscribed to a specific location boundary.

The TO will store and process environmental factors about
connected and unconnected vehicles to give rise to trajectories
for connected vehicles. The TO needs to consider time-critical
variables such as the timestamp of the vehicle location, the
speed of the vehicle and the vehicle-specific dimensions. The
TO provides a coordinated trajectory recommendation for a
single or set of road users, which will then be sent to the
connected vehicles through the V2X Gateway. The connected
vehicles have the choice to either accept, reject or abort the
recommendation. This feedback information is supplied by the
connected vehicles to the V2X Gateway. The feedback can be
used to recalculate trajectory recommendations.

Unconnected vehicles are not able to communicate with
the TO and they cannot interpret or use trajectory recom-
mendations. However the lane merge coordination is aware
of unconnected vehicles by means of the Image Recognition
system. This Image Recognition system provides the GDM
with the RUDs to be stored. The road user information will

be requested by the TO to create trajectory recommendations.
To this end, a set of messages need to be defined for communi-
cating all the components within the lane merge coordination.
Messages used in the communication will employ a com-
mon message formatting based on JavaScript Object Notation
(JSON). This allows to communicate human-readable text, that
can be received and processed in any software component.
The message implementation for all messages uses JSON as
specified in [25] and a description of the messages is presented
in Table I.

In this paper, we will focus on the design, implementation
and evaluation of the TO and the DF. As the other components:
Image Recognition system [24], V2X Gateway [26] and GDM
have been created and explored by external work [6]. The
proposed architecture model follows a microservices approach,
consisting of a suit of independent components that can
communicate using Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP). So long as the connections
and the message format are guaranteed, the TO is not affected
by the interaction of other components. However, due to its
nature, the DF is dependent on the quality of the data it
receives from other components.

B. Traffic Orchestrator

The TO must demonstrate a level of safety concern and
overall reliability. To do so, it must implement certain func-
tionalities to appropriately integrate with the environment and
perform a successful lane merge. These functionalities must
provide an implementation such that the TO can:

• Provide safe manoeuvre recommendations that seek to
reduce collision.

• Provide insightful explanations during the execution of
the TO.

• Successfully establish a subscription service with the V2X
Gateway.

• Receive and send data to the V2X Gateway over a TCP
connection.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3017931

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 2. Proposed TO architecture.

• Handle JSON messages to process subscription re-
sponses, manoeuvre feedback and RUDs.

• Calculate manoeuvre recommendations based on the in-
formation provided by the GDM.

• Process the feedback of a specific manoeuvre recommen-
dation.

• Successfully merge a connected vehicle onto a single or
multi-lane carriageway.

The proposed architecture for the TO system is presented
in Fig. 2. The main purpose of the Detection Interface is to,
receive any data being sent, over a TCP connection, from
the V2X Gateway. The Detection Interface also acts as an
intermediate filter that will read JSON strings and process the
JSON messages into more compact and efficient structure to
be used by the TO. Similarly, the Network Interface will act
as a filter that will convert and translate information within
the TO, to JSON messages to be fed into the V2X Gateway.

A Knowledge Base has been designed to store the informa-
tion sent to the TO, so that it can independently work and
will not be influenced by any unusual behaviour of other
components. It is maintained to guarantee that a manoeu-
vre recommendation is calculated based on all current road-
environment knowledge, containing only the RUDs that the
GDM has most recently transmitted. The Knowledge Base,
mimics the access and modification functions of a typical
database. As such, the knowledge base is able to:

• Insert a RUD to represent the most recent environmental
snapshot.

• Provide access to RUDs being stored in order to query
certain conditions and provide manoeuvre recommenda-
tions.

• Delete RUDs if they are out-of-date or no longer relevant.
• Provide a search function allowing the retrieval of a RUD

by their Universally Unique Identifier (UUID).

The Exchange Interface has been designed to have two
responsibilities: execute the TO application and mediate the
flow of information across all interfaces in the TO. The
Exchange Interface takes structured data from the Detection
Interface and appropriately forms the data into entities. These
entities can then be reused throughout the rest of the system
in a consistent manner. This component directly interfaces
with the Knowledge Base and will collect structured RUDs.
Another functionality of the Exchange Interface is to provide
access for consistent communication methods to a set of TO
functionalities, allowing different algorithms to run on top of
it.

There are three major design factors that need to be con-
sidered with great detail, when proposing a lane change.

• Safety distance from all cars on the highway; this is to
ensure that the cars keep the safety breaking distance at
all times.

• Positioning and acceleration of the connected vehicle in
comparison with the values of other connected vehicles
on the road. Therefore, the motivation of the TO, is to
provide positional coordinates as well as acceleration and
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speed values to the connected vehicle to give a path to
follow for a merge.

• Acceleration and positional values of the neighbouring
vehicles, need to be stored. TO passes instructions to
other connected vehicles creating a multi-agent solution
that benefits the interest of every vehicle on the road.

In order for the TO to communicate with the other com-
ponents in the stack, a microservice approach is adopted
ensuring, cross platform compatibility and hence the ability
to communicate with ease. The TO adopted jit trace files, to
provide a way for tensor manipulation allowing the python
created model to run on c++, maintaining the efficiency and
performance known to c++ on the TO. Functionality of the
TO is broken down into 5 main essential components.

• Sending or receiving a subscription to and from the V2X
Gateway.

• TO is required to receive the notification messages from
V2X Gateway. This is a key step, as the messages contain
the vehicle descriptors that act as input feature vectors for
the RL model.

• With the information taken from the notification mes-
sages, the TO needs to send the manoeuvre recommen-
dation of the connected vehicle back to the V2X Gateway,
forwarding it to the vehicle in need.

• Manoeuvre feedback is vital to the RL learning process,
as it facilitates its reward, whereby a successful merge
correctly reinforces the algorithm and increases the accu-
racy and performance.

• To terminate the connection of the TO and the V2X
Gateway, an unsubscribing mechanism needs to take
place.

C. Data Fusion

RUDs from both the connected vehicles and the Image
Recognition system are received in the DF. This component
is responsible for updating the GDM data with the latest
RUD and avoids having a duplicated RUDs coming from a
connected vehicle and from the Image Recognition system.
Also, it is responsible for enhancing the RUDs accuracy by
combining most accurate values from each sources, i.e the
acceleration from the Image Recognition system is less precise
than the one provided by the connected vehicle. Due to its
nature, the DF is highly dependent on 2 factors: the quality of
the data sent by the Image Recognition system and the rate of
the messages coming from the V2X Gateway. The data fusion
consists of four different components:

1) Network Interface is responsible for communicating
with other components. It receives RUDs from the V2X
Gateway, deserialises the and forwards messages to the
Data Synchronisation. Also, it receives the fused and
corrected RUDs from the Data Association, serialises
and sends them to the GDM.

2) The purpose of Data Synchronisation is to synchronise
received RUD in time. It collects all received RUDs
during a certain period. The period was set to 100ms
corresponding to half the frequency of incoming mes-
sages. It then extrapolates each one to the same temporal

reference. Given that the period is small considering the
speed of the objects a uniformly accelerated rectilinear
motion was found sufficient. Moreover, it updates the
positioning information of each object and its timestamp.

3) Data Association matches objects detected by the cam-
era with connected vehicles. For each detected object
by the camera, a check is performed to verify if the
object is already matched with another in the Fusion
History Map. Then, it can raise or lower the confidence
according to the Euclidean distance and the angle be-
tween them.

4) Fusion History Map stores the history of matched ob-
jects. For each matched object, the following informa-
tion is stored: last seen timestamp, connected vehicles
UUID, camera detected UUID and confidence level. The
history map is cleaned every few seconds based on the
last seen timestamp.

D. KPI Evaluation Platform and Micro-Services Manager

The main goal of the KPI Evaluation Platform is monitoring
the overall system in real time by aggregating every component
logs in a single and easy to search platform. This platform
allows the evaluation of software and network KPIs. In terms
of performance, the main KPI of this component is the
trajectory delivery time which provides the time it takes to
deliver a manoeuvre recommendation, since the moment a
RUD is first sent. Additionally, reliability is the second KPI
measured by the messages loss of each component. The KPI
Evaluation Platform provides three main functionalities:

1) Collect received logs from different components by
exposing a network communication interface. The re-
ceived messages are parsed, formatted and enriched,
then forwarded to the database.

2) A database is used to store the messages and offers a
query language to explore the data and compute KPIs.

3) A Graphical User Interface (GUI) for data visualisation
that allows users to monitor data in real time. It offers
the ability to explore raw data and to create charts and
dashboards.

The Elastic stack is a set of well integrated open source
software components designed for this purpose: Logstash for
data collection, Elasticsearch to store and to query data and
Kibana for data visualisation. The Micro-Services Manager
enables connectivity across independent components in a
scalable solution, providing a central logging system where
all the components can be monitored for further manipulation
and analysis.

IV. REINFORCEMENT LEARNING MODEL

This section describes the decisions taken regarding the
design of the RL models. Furthermore, it briefly describes the
dataset utilized for training the algorithms.

A. Training Dataset Exploration and Manipulation

Two different datasets collected by Federal Highway Ad-
ministration Research and Technology - Coordinating, Devel-
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oping, and Delivering Highway Transportation Innovations1

were used in this work. The datasets represent the data
collected on two American motorways: Interstate 80 Freeway
(I − 80) and US − 101.

From this dataset, we extracted every lane merge scenario
with 3 vehicles, where the coordinates, speed, acceleration,
size and heading of the vehicles are considered. The lane
merge scenario itself can be described with 3 vehicles,
whereby, the merging vehicle has the goal of joining a new
lane in between a preceding and following vehicle. Thus the
adoption of 3 vehicles in this work, reflects a lane merge
instance, by considering a following, preceding and merging
vehicle. Limiting the scenario in this way, allows for a
more compact implementation that is conservative on both
computing resources and model convergence time. Moreover,
this processes can be repeated through the entire number of
lanes allowing for a dynamic lane merge scenario regardless
of the amount of lanes on the road. Further reducing the need
for lane and road information, as the merging vehicle needs
only to concern itself by aligning its position corresponding
to the line formed by the preceding and following vehicle in
the target lane. In the likely event where there is no preceding
or following vehicle present, a mock vehicle is procured to
simulate the merging scenario.

The safety conditions of a lane merge are based on the
intersection of two pairs of circles. Firstly, one circle has the
central x and y coordinates of the merging vehicle and the
radius of 10% of its speed in km

h . This is compared with a
second circle which has the central x and y coordinates of the
preceding vehicle and the radius of its length. If the circles
do not intersect then the data is viable for the RL algorithm
to train on.

B. Recommended actions
Design premises for detecting lane changes and data la-

belling are based on [27]. However, several changes had to
be made due to the use of merging actions for the deep
reinforcement learning. The TO utilises the recommended
actions obtained by the deep reinforcement models to apply
Newtonian equations in order to calculate the respective speed,
acceleration, distance and position for each vehicle on the
road. The actions are thus configurable and can be optimised
to remove positional and speed bias in different merging
scenarios. Defining the actions is vital to ensure the neural
network layers are configured correctly and as such obtain an
accurate model. The actions that can be given to a connected
vehicle is broken down to:

• Acceleration: Increases the acceleration
• Deceleration: Decreases the acceleration
• Left: Change the heading westwards
• Right: Change the heading eastwards
• auto-pilot: maintain current values.

C. RL Design
Unlike most papers that require additional layers to obtain

data from the environment, this work has omitted such layers.

1https://www.fhwa.dot.gov

TABLE II
LAYERS COMPOSING THE VARIOUS RL MODELS

Architecture Type Input (nxd) Output (nxd)

DQN
Linear 1x19 19x200

Vanilla RelU 19x200 19x200
Linear 19x200 1x5

Features Linear 1x19 19x200
RelU - -

Dueling
DQN

Advantage Linear 1x19 19x200
RelU - -
Linear 19x200 1x5

Value Linear 1x19 19x200
RelU - -
Linear 19x200 1x5

This is due to the fact that the image processing is handled
by lower layers of the stack. As a result data received in
transformed from JSON format into a feature array including
positions, speed and acceleration, which is fed directly into
the model saving computational resources. The layers of the
reinforcement learning model are vital to the performance of
the connected vehicle. The larger the number of layers, the
more the number of connections are being made from the
input to output data. Three risks were identified and properly
addressed: over fitting leading to trivial generalisation to new
scenarios, the training time due to a large number of layers and
the computational resources required and the representation of
roads in the algorithm.

This work omits the portrayal of road information such
as the length and width of the road to the longitude and
latitude of the lane positions. This design choice, of excluding
the road information allows a better generalisation of the
model to other scenarios where the road information may
vary significantly. Moreover, this reduces the complexity of
the model by minimising the dimensionality of the input to
the algorithm. Therefore, the layers of the RL models were
designed as it is shown in the Table II which outlines the
neural network structure for the Dueling DQN and DQN. The
input given by an (nxd) array, represents the features obtained
by the three aforementioned vehicles. The input features are
mapped to 200 links through a linear function. The Rectified
Linear Unit (RelU) is used as an activation function to aid
the decision process of the RL, it is widely used in deep
learning. Finally, the network outputs a (nxd) array containing
the chosen action out of the 5 actions mentioned in IV-B.

On the other hand, the lower section of Table II exposes the
inner workings of the Dueling DQN model. An immediate
observation is the larger number of layers that the model
possesses compared to the DQN model. Another observation
is clear where each of the intermediate layers Features, Ad-
vantages and Value mimic the neural structure of the DQN
in the sense that they are made up on 2 Linear layers and a
RelU layer. The addition of these layers allows for feature-
value mapping that enables each action to correspond with a
cost in the environment, and the advantage obtained to the
vehicle from taking said action. However, due to the increase
in complexity and size of the neural structure, the training time

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3017931

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reward

0

20

40

60

80

100

D
is

ta
n

c
e

 (
m

)

Negative Reward

Positive Reward

Fig. 3. Graph showing the different approaches on the assignment of rewards
with respect to distance of vehicle from merging point.

increases proportionally to the number of neurons presented in
each layer. As such, to alleviate this caveat, the hidden layers
size of the neural layers have been reduced to negate larger
training times.

D. Rewards, Loss Function and Exploration of state space

1) Reward Function: The rewards that reinforce the merg-
ing connected vehicle is calculated based on the vehicle
position relative to the optimal merging point between the
preceding and following vehicle. A desired terminating state,
is when the merging vehicle is successfully placed in between
the following and preceding vehicle, whilst maintaining an
appropriate safety distance. The use of a parabolic function
as a reference to the rewards assignment allows the gentle
guiding of the vehicle to the optimum state through constant
incremental rewards. Using a other functions may lead to
unexpected behaviour of the vehicle, this is highlighted with
the use of a step function, where the vehicle only receives a
distinctive reward at the end of the trajectory leaving all the
intermediate way points unassigned.

The aim of the algorithms is to codify the merging vehicle
to mimic human-like merging scenarios, by applying minimal
acceleration and changes to the overall merging scenario. At
the same time, the merging vehicle should also maintain a
safety distance as large as possible from the following and
preceding vehicle to ensure the safety of the merging scenario.
The assignment of rewards is clearly seen in Fig. 3, where
the negative and positive rewards an agent can obtain follow
a parabolic curve. This guides the RL agent to reduce the
distance between the target merging point and vehicle location
to obtain the greatest possible reward.

The positive (equation 1) and negative (equation 2) reward
allocation denoted as rp and rn respectively, is calculated as
follows, where dmp corresponds to the distance to merging
point, s is the speed and acc the acceleration:

rp =

∣∣∣∣(1× 10−3 × 1

dmp
× 1

s
× 1

|acc|

)∣∣∣∣ (1)

rn = − (1 + rp) (2)

Where the reward is bounded between [−1,0] and [0,1] for
the negative and positive reward function respectively.

The positive reward function was selected based on the
data extracted from datasets mentioned in IV-A, as such a
standardisation factor of 1 × 10−3 is employed. The reward
function, focuses on assigning a reward relative to the agents
distance to the merging point placed between the following and
preceding vehicle. Whilst, enforcing the use of slow speeds
and steady acceleration adhering to road safety precautions, to
obtain a maximum reward. The negative reward function, was
developed to utilise the same thought process as the positive
reward function, albeit adopt a negative reward allocation
scheme. More importance could be placed on the different
aspects of the reward function, by introducing a weighting
factor. This comes at the cost of neglecting the other merging
factors of a vehicle in lane merge.

The positive reward reinforces the agent to reduce the
distance to the target merging point to obtain the largest
reward, whilst the negative reward punishes the agent less as
the distance to the merging point decreases. The difference of
two reward assignment functions greatly effects the behaviour
of the vehicle during a merge. The negative reward assignment
will calculate the distance to the merging point and accord-
ingly reinforce the agent, this emphasises the agents urgency
to obtain the least most negative reward as quickly as possible
in order to improve the overall utility of the merging instance,
hence importance is placed on the time taken to complete
the merge as well as the distance the agent maintained to the
merging point. Whereas, in the positive reward assignment
instance, the agent receives a positive reward increasing as
the distance to the merging point decreases, thus the vehicle
can instead focus on accumulating the largest possible reward
by mimicking a human merge with respect to safety and
adaptability.

2) Loss Function: There are numerous viable loss functions
that can be adopted to a RL approach [28]–[32] showcase rang-
ing loss functions such as various actor-critic loss functions to
fuzzy network loss functions and even bespoke loss functions
utilised in [33] which incorporated probabilistic functionality.
The loss function enforced greatly impacts the performance of
the agent. However, Mean Squared Error was adopted in this
work. As seen by the following formula:

loss(x, y) =

{
0.5× (x− y)2, if|x− y| < 1

|x− y| − 0.5, otherwise
(3)

The loss function was specifically chosen due to its less
sensitivity to outliers and exploding gradients [34]. Which
would present an issue in this work since, according to section
II, the measurements captured in the data set, contained many
outliers, and as such the loss function provides a way to
combat such faults with the data.

3) Exploration vs Exploitation: RL generally suffers from
balancing exploitation vs exploration (see section II). The use
of epsilon greedy method alleviates this problem, setting a
high epsilon value at the start of training is beneficial, as a
high epsilon corresponds to a higher probability of a random
action, such that at the start of training the RL agent gets
the maximum number of random actions made to explore the
environment state. As the model learns the probability of a
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random action is reduced as the model computes the optimum
action to take. This ensures, that the model has a gradual
approach to exploitation whilst still employing random actions
to uncover hidden rewards that have not been seen by the
model.

V. IMPLEMENTATION

A microservice approach was selected for implementing
the architecture. It supports real world production architecture
where each use case can be handled by a different application
with a standardised way to access data. In this sense, the
V2X Gateway manages the data access of each microservice.
Microservices can be deployed, tested and deployed inde-
pendently from one another with minimal to zero effects on
other aspects of the stack. Microservice architecture also allow
horizontal scaling of single components on the fly for example
during rush hours. This work focuses on four components: TO,
Data Fusion, Key Performance Index evaluation platform and
Microservices Manager. The use of microservices approach
allowed for the isolation of components giving the architecture
more resilience in a real world scenario where one point of
failure does not mean the failure of the entire architecture. Fur-
thermore, this approach encourages scalability and flexibility
of the components, thus new advancements can be applied
on the architecture without minimal to zero effects on other
aspects of the stack.

A. Traffic Orchestrator

The implementation of the TO allows us to evaluate differ-
ent RL models and select the most optimal one. A summary
of the decision making process can be seen from the pseudo-
code shown in Algorithm 1 and 2. Algorithm 1 describes the
process of predicting a recommendation for merging using the
notification messages received from the V2X Gateway, either
adding or removing vehicles from the knowledge base. The
vehicles from the knowledge base are filtered to obtain the
merging, the following and preceding vehicle, in order to pass
these values as an nxd feature vector as input for the RL,
and then to compute the most optimal action to undertake.
This process is repeated every 100ms to ensure maximum
road relevance as well as to keep environmental information
for the road updated. Once a notification message is received
containing a vehicle in need of a merge, the TO sends a
trajectory recommendation consisting of one way point for the
connected vehicle to undertake, the process is repeated until
the notification messages no longer indicates a vehicle in need
of merge. This aids the real-time reasoning of merge creation
to make use of the staggering speeds of 5G and ensuring a
safe and revised manoeuvre recommendation.

As shown in Algorithm 2, the way points are calculated
from Newtonian equations, as the output of the RL merely dic-
tates which of the actions to undertake, but not the coordinates,
speed or accuracy the vehicle should achieve. The way-points
are then parsed into a Manoeuvre Recommendation message
format to be sent to the V2X Gateway and onto the vehicle
for implementation. The vehicle responds with a Manoeuvre
Feedback depending on the current vehicle speed, acceleration

Data: Vehicle Descriptors
for vehicle in V ehicleDescriptors do

if vehicle in merging lane then
preceding vehicle ←
preceding vehicle(merging vehicle)

following vehicle ←
following vehicle(merging vehicle)

action A ←
(DuelingDQN,DQN)(preceding vehicle,
merging vehicle,following vehicle)

way-point WP ← Newtonian features(action A)

Manoeuvre Recommendation ← way-point WP

return Manoeuvre Recommendation
end

end
Algorithm 1: Compute Recommendation()

Data: Continuous environmental information received from
Architecture. 100ms approx.

initialise database()
while input stream do

message ← input stream
if message.type notification then

update database()
Compute Recommendation()

end
if message.type Trajectory then

if Trajectory rejected then
Check Road Availability(database.vehicles)

Compute Recommendation()
end
update database()

end
end

Algorithm 2: TO Create Trajectory()

and time taken to implement the sent way-points. If the way-
point is rejected, the TO recalculates another way-points based
on the updated environmental information to provide another
recommendation for the vehicle to complete a safe manoeuvre.

B. Data Fusion

The data synchronisation aligns input received from the
connected vehicles and from the camera system during a
period of time to a fixed timestamp by extrapolating the
position of each road user. The data association take the
extrapolated positions of the road users and tries to match each
connected vehicle with a camera detected object. It uses the
euclidean distance between two objects to determine if they
are the same road user. In some cases, due to measurement
inaccuracies the distance can be higher than the width of
a lane, this is corrected by calculating the angle between
the heading of the following object and the preceding one.
Distance and heading thresholds were adjusted to match the
precision of the incoming data. Each time two objects are
fused the confidence of the match is increased in the fusion
history map. On the contrary if two object are not fused the
confidence is lowered. If an object was not fused during the
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Data: camera system detected objects
Data: connected vehicle objects
for camera object of camera system detected objects do

for connected car of connected vehicles objects do
distance ← euclidean distance(camera object,

connected car)
if distance ≤ LOWER DISTANCE THRESHOLD
then

fuse(camera object, connected car)
raise confidence(camera object, connected car)

end
else if distance ≤ HIGHER DISTANCE THRESHOLD

then
angle ← angle between two

objects(camera object, connected car)
if |angle− connected car| ≤
HEADING THRESHOLD then

fuse(camera object, connected car)
end
else

lower confidence(camera object,
connected car)

end
end
else

lower confidence(camera object, connected car)
end

end
if not fused then

matched ←
fusion history map.find(camera object.uuid)
if matched AND matched.confidence ≥
CONFIDENCE THRESHOLD then

fuse(camera object, connected car)
end

end
end

Algorithm 3: data association algorithm

association phase the algorithm checks in the fusion history
map if it has already been matched with a high enough
confidence and fuses the objects accordingly. A description
of this algorithm in pseudo code is available in Algorithm 3.

C. KPI evaluation platform

The implementation of the KPI evaluation platform is based
on two main elements: KPI Message format and Logstash
pipeline. Fig. 4 shows an illustration of the web-based GUI
where a dashboard was created for real-time monitoring.

1) KPI Message format: The message payload was de-
signed to reduce the network overload and Logstash processing
time. It contains the following information:

• Component: a unique identifier for each component
• Type: the message type as listed in Table I.
• Direction: identify if the message was received or sent
• Partner: the unique identifier of the partner sending or

receiving the message
• Message uuid: the unique identifier of the message
• Initial timestamp: the timestamp of the first emission of

the message
• Timestamp: the timestamp of the moment the message

was sent or received by this component

Data: KPI message received from a component
while input stream do

message ← input stream
parse message as kpi log()
if !message kpi log then

save(message)
end
if message kpi log then

message.total duration ← message.timestamp -
message.initial timestamp
if message.direction received then

related ← find related sent log (message uuid,
partner)
message.network time ← message.timestamp -
related.timestamp

end
else

related ← find related received log (message uuid,
partner)
message.compute time ← message.timestamp -
related.timestamp

end
save(message)

end
end

Algorithm 4: Logstash pipeline

2) Logstash pipeline: With the information described in
the previous section it is possible for logstash to calculate
network and software processing times by aggregating sent
and received messages. Each time a KPI message is received
by the collector it is parsed. The pipeline then calculates the
total duration by subtracting the initial timestamp from the
timestamp field. Then the script searches for the previous
event of the same message and calculates the elapsed time
as described in Algorithm 4.

The trajectory delivery time is one of the KPI that is
important to the evaluation of the communication within the
trajectory creation scope. We define the trajectory delivery
time as the time it takes to deliver a manoeuvre recom-
mendation, since the moment a RUD is first sent by the
Image Recognition system or a vehicle. The KPI Evaluation
Platform computes the time of every RUD sent from the
Image Recognition system (or the vehicle itself) to the DF
and passed onto the TO to calculate and forward a manoeuvre
recommendation to the V2X Gateway which broadcasts it to
the vehicle.

D. Microservice Manager

A containerisation approach was used to incorporate the
variety of microservices used for the lane merge coordination.
This enabled minimum dependencies for implementing the
services in the test track as well as scaling the solution
into a production ready environment. Software components
were containerized using Docker as a hypervisor, this allows
to manage images, drivers and set to communicate on a
single network to ensure maximum connectivity. Components
deployed in the edge cloud use the Graylog Extended Log
Format (GELF) logging driver. This encapsulates the standard
output of a container into a GELF message, compressing
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Fig. 4. Illustration of the KPI real-time monitoring graphical interface.

through the use of gzip and sending UDP messages to the
Logstash server. while on board units in connected vehicles
sent the messages in plain text through UDP to the Logstash
server through the 5G network. Enabling a central logging
system for all the components that can be monitored for further
manipulation and analysis.

VI. RESULTS

To analyse the effectiveness of the lane merge coordination
solution, this paper focuses on two integral testing phases: a
performance evaluation of the RL models and a set of real
world tests [6] using connected vehicles. The purpose of the
performance evaluation is to determine the optimal RL model
to be used for the TO on real tests. For this, we have selected 4
main KPIs: loss, assignment of positive vs negative rewards,
accuracy and predicted vs human trajectories. Furthermore,
we include a comparison between the proposed RL models
and other state-of-the-art ML models (Gradient Boosting,
Random Forest and Linear Regression) [27]. On the other
hand, the real world tests defines an actual merging scenario
on a test track, in which the TO is predicting live trajec-
tory recommendations to connected vehicles. A comparison
of these predicted trajectories with recorded data from the
logging microservice in the architecture is also provided. In
this case, we selected 5 KPIs to analyse the lane merge
coordination: predicted vs human positioning, inter-vehicular
distance, merging acceleration, trajectory length and trajectory
delivery time.

A. Performance Evaluation Tests

Two different RL models (i.e, DQN and Dueling DQN)
were trained using the dataset described in section IV. This
dataset was split into 3 subsets: training, testing and valida-
tion where each of them with 70%, 20% and 10% of the
size of the original dataset respectively. The training subset

contains 105 merging instances where each merging instance
is approximately 70 data points that represent a merging
scenario. The merging scenarios are randomly selected from
the dataset, but the data points are iterated over chronologically
to provide a logical merging instance. The model predicts and
allocates a trajectory recommendation to connected vehicles
for a successful merge.

1) Loss Comparison of RL models: Fig. 5 describes the loss
obtained per iteration for the DQN model. As expected, Fig. 5a
and 5b show that the loss is gradually decreasing as the number
of iterations grows until the threshold. The main difference
when using negative or positive rewards is loss stability, since
Fig. 5a shows a more stable behaviour compared to Fig. 5b,
there is a sharp drop close to the iteration 3.5 × 105 in Fig.
5b that triggers lower loss values. Similarly, Fig. 6 present the
loss for the Dueling DQN model which performs significantly
better in terms of loss compared to DQN. Fig. 6a and 6b
follow the same trend than in Fig. 5 correspondingly, however
Dueling DQN converge sooner. This can be seen from the
lowest loss obtained by the positive assignment of rewards
of 10−5 at approximately iteration number 2.3 × 105, which
is significantly lower than its counterpart in the DQN model.
Furthermore, the negative reward assignment also portrayed
signs of a shorter convergence time for Dueling DQN, ob-
taining its lowest loss at iteration 5.2× 105. This means that
Dueling DQN allows a reduction in terms of training time and
computational resource consumption.

Moreover, the rewards that reinforce the agent heavily
impacts loss, convergence and stability of the models. Dueling
DQN produced the most stable learning phase when using pos-
itive reward, resulting in a lower loss and earlier convergence.
The architecture developed for Dueling DQN (see section IV)
provides better values in terms of stability and training time
for the agent, which is noticeable by a smaller loss amplitude
and an earlier convergence of the model. On the other hand,
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(a) Negative Rewards (b) Positive Rewards

Fig. 5. DQN Network Models Loss Comparison through negative and positive reward assignment.

(a) Negative Rewards (b) Positive Rewards

Fig. 6. Dueling DQN Network Models Loss Comparison through negative and positive reward assignment.

(a) Negative Rewards (b) Positive Rewards

Fig. 7. Histogram for comparing assigned rewards for trajectory recommendation by DQN agent.

the DQN model could not compete with the loss presented
by the Dueling DQN even with a longer training time. This
can be closely correlated with the prediction of trajectory
recommendations that the model forecasts. Whereby, the lower
the loss the closer the predicted manoeuvre is to the recorded
manoeuvre in the dataset.

Neglecting the hardware used for training the models, the
convergence of the Dueling DQN occurred at approximately
2.3 × 105 and 4.8 × 105 iteration for positive and negative
reward allocation respectively, whilst the DQN occurred at
8.2× 105 and 5.3× 105.

2) Positive vs negative rewards assignment: To be able to
fully compare the effect of the positive vs negative rewards
have on the DQN model, Fig. 7 and 8, highlight the count of
positive and negative rewards obtained during training time
of the model. The assignment of the rewards impact the
success of the trajectory recommendation. Both the models

assigned the negative reward schema follow the same general
shape seen in Fig. 7a and Fig. 8a, where there is an inverse
proportional relation between the magnitude of the rewards
and the reward obtained, until the model reaches a successful
merge obtaining a reward of 0 where the density increases
greatly, indicating a converged model. The density of rewards
obtained at 0 is 1.7× 104 by the Dueling DQN compared to
1.5×104 for DQN. On the other hand, the positive assignment
of rewards provided a surprising shape for the graph, where
still following the general indirect proportionality presented
by the reward, the sudden increase in magnitude takes place
at a reward of 0.8. Furthermore, the density of that reward
surpasses the density obtained by a reward of 1 by a minuscule
factor. Notwithstanding, the Dueling DQN still receives a
higher density of greater rewards than the DQN varying by
a density of 3 × 103. Although, the agent obtained a large
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(a) Negative Rewards (b) Positive Rewards

Fig. 8. Histogram for comparing assigned rewards for trajectory recommendation by Dueling DQN agent.

density of rewards at 0.8 proves the existence of a global
minima in the positive assignment of rewards that the model
needed to surpass in order to obtain a successful merge that the
use negative rewards did not face. Therefore, the loss and the
reward assignment are used hand in hand to obtain a clearer
insight of the model performance for optimal model selection.

3) Model accuracy on Training and Validation subsets:
To test the generalisation of the model, with respect to the
recorded dataset that the model was trained on, the test subset
is used to gain insight on performance of the agent. If the
generalisation for the Dueling DQN with a positive reward
function is successful in the testing subset, then it can be safely
assumed that it could be used to generalise to different merging
scenarios in real world instances. The accuracy is based on
the number of successful merges that the model predicts from
the total number of merging scenario presented in the subset.
The accuracy is measured by recording the predicted trajectory
along with the human recorded trajectory, if the predicted
trajectory reaches the merging point with the same route as the
human trajectory it is considered a successful merge with very
high accuracy, on the contrary when the predicted trajectory
does not follow the same route as the human trajectory, it is
considered as a low accuracy prediction. However, the agent
can also recommend trajectories that reach the merging point
successfully, but by taking another route. The goal is achieved
whereby the merging vehicle enters the target lane, albeit the
fact that a different route was taken. Finally, the unsuccessful
merge instance is where the merging vehicle does not reach
the merging point at all.

In Fig. 9, successful merges mimicking human-like trajec-
tories during the training phase are presented. The individual
points at the start of each iteration number, correspond to the
accuracy obtained in both models for the training subset. A
squared function is used to fit the accuracy shown, to give an
approximation to the accuracy that the models had in between
epochs. The results are to be expected when considering the
unseen scenarios of the dataset and the uncomplex architecture
of the DQN compared to that of the Dueling DQN. The testing
accuracy of the models was carried out with the same criteria
as the training accuracy where the most optimal model from
the training run iterations was obtained for both DQN and
Dueling DQN. The testing accuracy is seen in Fig. 10, the
Dueling DQN model scored an accuracy of 64% for successful
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Fig. 9. Training accuracy for DQN and Dueling DQN models incorporating
positive rewards. Only successful merges mimicking human-like trajectories
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human-like merges and 12% for successful merges with a
different route. Whereas, the DQN model scored 59% and 8%
respectively. Dueling DQN has a better performance compared
to DQN for human-like merges and merges with different
route. However, the accuracy fitting of the model can prove
to be inaccurate, but is used to represent the data to provide
a general consensus on the theoretical accuracy that would be
obtained mid epochs.

4) Model accuracy compared with others ML models: In
order to provide some insights of the expected accuracy, the
approaches taken in this paper regarding the implementation
of the RL models is compared with state-of-the-art ML
prediction algorithms, i.e., Gradient Boosting, Random forest
and Linear Regression. The same Next Generation Simulation
Model (NGSIM) dataset was used in all the tests, so that
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Fig. 11. Acceleration accuracy comparison between state-of-the-art ML
models and the RL proposed models.
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Fig. 12. Heading accuracy comparison between state-of-the-art ML models
and the RL proposed models.

the feasibility of the approach can be highlighted when set
side by side. Fig. 11 and Fig. 12 depicts the merging model
against the accuracy and heading obtained in the testing subset
respectively. The adoption of an RL component be it DQN
or Dueling DQN significantly improved the quality of the
lane merge in terms of accuracy for acceleration and heading
suggestions, contrasting a ML approach. It is important to
note that the acceleration accuracy, for the RL models, was
obtained from human-like trajectories and trajectories with
different route leading to the merging point. This is not
the case when predicting the heading, since an incorrect
heading measurement, will lead to an unsuccessful trajectory
recommendation.

5) Predicted vs Human Trajectories: The comparison of
human trajectories against the predicted trajectories are vital
when assessing the overall performance of the RL model. This
is due to the fact that, the connected vehicle should match a
human merge such there is minimal disruption on the road, nor
cause any unexpected behaviour from unconnected vehicles
unaware of the merge. Hence, if the RL model can achieve
human like trajectories, then its feasibility as a solution for
the lane merge coordination scenario significantly increases.

The agent has managed to mimic the recorded human-like
trajectories for the successful merging instances, such case is
presented in Fig. 13a. This is an interesting finding, since the
reward function can be used to directly influence the agent
behaviour to match a human trajectory, in order to achieve
maximum intractability of vehicles on the road. However,
another merges attempt to reach the target merge location via
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Fig. 13. Difference of human vs predicted trajectories for successful merges.

a different route, since the agent does not perceive the lanes
surrounding the vehicles, it is hard for the model to determine
the optimal path to undertake with respect to the lanes, as Fig.
13b shows. Nonetheless, this was a design choice in the RL
model (see Section IV) to ensure maximum generalizability
of the approach to different scenarios rather than, using a
supervised learning approach to learn one scenario. Thus, the
implementation and the architecture can be widely used across
different scenarios with out the need to retrain the models.

B. Automotive and Communication KPIs for real vehicles

The lane merge scenario used for the real tests consists
of a test track as described in Fig. 14 using connected
and unconnected vehicles and the Lane Merge Coordination
presented Fig. 1. For the Image Recognition system [24] was
used and for the GDM, the V2X Gateway and the 5G Network
with edge cloud capabilities the work from [26] was also
used. Four vehicles were used, three are connected: merging,
following and preceding vehicle, while the fourth vehicle was
unconnected. This enables the trajectory recommendation to
be passed to the merging vehicle for execution, whilst giving
the TO some control over other connected vehicles in order
to suggest a cooperative lane merging scenario benefiting the
entire road. The TO is aware of unconnected vehicles due to
the RUDs sent by the Image Recognition system.

In order to compare live TO’s predicted trajectories and
human trajectories, a preliminary test was implemented with
no TO’s interaction: several merges were performed on the test
track while the KPI evaluation platform was storing the logs
of those merges that occurred on the road. These stored logs
are the human merges that are used to compare the predicted
trajectory accuracy and the human likeness of the manoeuvre.
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(a) Eagle-view of lane merge (b) Close-Up of lane merge

Fig. 14. Real lane merging scenario in test track using connected vehicles [6].
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Fig. 15. Human vs computed trajectories based on their location on test track.

1) Predicted vs Human Collected Trajectory Positioning:
Fig. 15 shows the latitude and longitude of the merging sce-
nario for human and computed way points. The general shape
of the merge has been detected and successfully predicted by
the TO corresponding to the road architecture, this is a good
indicator that the RL can adapt and generalise to real world
scenarios that it has never encountered before. However, there
is an obvious bias from the predicted way points. Since, the
road information was removed from the training of the model
to ensure a greater generalisation, has actually hindered the
neural network to exactly follow a trajectory that a human
may undertake. The RL also required perfect synchronisation
of the environment in real-time, therefore, high frequency, low
latency and great precision was required to ensure that the
TO could feed the correct RUD to the RL. As such, the bias
could stem from the minor delays the architecture incurred.
The precision and accuracy of the architecture incorporating
5G and edge cloud was higher than the average [35], this could
have not been obtained by using out-of-the-box implementa-
tion of the 5G communication spectrum. Therefore, there is a
trade off between its ability to generalise the problem to the

intended behaviour that is expected to achieve, with respect to
the communication architecture the model is placed in.

2) Inter-Vehicular Distance: The inter-vehicle distances
provide an insight on the merge of the connected vehicles
in between the preceding and following vehicle. This value is
mainly affected by the data fusion of the Image Recognition
system and the actual connected vehicles broadcasting posi-
tion. Fig. 16 presents the Empirical Cumulative Distribution
Function (ECDF) of distance values recorded between vehicles
laying on the same lane for the TO and human manoeuvres. On
one hand, the largest amount of cases lies between 48− 60m
for Fig. 16a. On the other hand, Fig. 16b shows that inter-
vehicular distance varies greatly when the marge is undergone
by humans spanning from 5 − 70m. This means that human
merges were performed under risky situations in some cases.
In counterpart, the merging car does not hinder the safety
distances between the other vehicles that are presented on
the road, when calculated by the TO. In this sense, the TO
does not bias the merging distance between the preceding
and following car, opting to merge approximately in between
the two vehicles, to maintain the largest inter vehicle distance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3017931

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

0 10 20 30 40 50 60 70

Distance (m)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ti
le

(D
is

ta
n

c
e

)

(a) TO calculated inter-vehicle distance

0 10 20 30 40 50 60 70

Distance(m)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ti
le

(D
is

ta
n

c
e

)

(b) Human calculated inter-vehicle distance

Fig. 16. ECDF of inter-vehicle distance during merging scenario.
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Fig. 17. ECDF of acceleration values during merging scenario.

between the merging car and the two vehicles on the target
lane. Although this does not reflect human-like driving in most
cases, since the merging car can favour merging towards the
preceding vehicle to allow more room for subsequent actions
such as breaking, this was another design choice, in order
to ensure the adaptability of the model and the approach to
different lane merging scenarios, but also simplify the expected
behaviour of the merging vehicle, to reduce neural network
complexity and resources.

3) Merging Acceleration: Fig.17 presents the ECDF of
acceleration values against the acceleration obtained in the
scenario. The acceleration values given to the merging vehicle
were concentrated on speeding the vehicle up to merge in
between the two vehicles from a slow lane into the target
merging lane. The majority of the acceleration values lied in
the range 0 − 2 m2/s providing non extreme acceleration
values for a merge mimicking a human driver approach to
a lane merge. This means that the TO suggested acceleration
values that provides a smooth trajectory recommendation dur-
ing the merge. From the following vehicle’s point of view, the
recommendations given had the intended purpose of slowing
down the following vehicle to create a larger gap in between
the vehicles on the target lane, for a safer and smoother merge
experience. Consolidating the idea of a coordinated lane merge
approach taken on the road. The values obtained from the
V2X Gateway displayed minor noise which further affected
the speed and acceleration values recommended by the TO.

4) Manoeuvre Length: This distance is important when
analysing the adaptability of the TO generated recommenda-
tions. This is based on the fact that most motorway planning

procedures are designed with a certain length of merge that
corresponds to an expected velocity and acceleration for a
vehicle. In this case, the test track spanned 180m for the
merging lane scenario. Fig. 18 depicts the count of distances
obtained against the manoeuvre length. As seen from Fig. 18a
the manoeuvre length remained in the range 81m to 91m
solely focusing around the 80m mark for human manoeuvre,
varying greatly between the range. On the other hand, the TO
predicted manoeuvres stayed constant in the 154m region as
seen in Fig. 18b. This proves that the TO recommendations
although not being trained with road parameters maintained
a constant manoeuvre length corresponding to a successful
merge without compromising safety procedures and adhering
to the road structure. This ensures maximum adaptability of
said recommendations in a merging scenario in a constrained
road space scenario.

5) Trajectory Delivery Time: The vehicle trajectory de-
livery time was measured by the KPI Evaluation Platform
using the methodology described in section V. Software
components, mobile network and transport protocol have been
identified as main contributors of the overall trajectory rate of
delivery. However, the main propose of this KPI is to provide
a network performance metric to be use as a baseline and
we leave for future works an in-depth analysis of specific
component delay and their possible improvements. Therefore,
we focus on the trajectory delivery time per vehicle due
to the time in-synchronicity among vehicles, software and
network components. Fig. 19 shows 380, 000 measurements
taken during the merging tests, where the count of the time
taken to request and receive a trajectory recommendation is
plotted against the rate obtained. We ca see that in 30% of
the cases a trajectory delivery time of 50ms or less was
obtained, also 99.9 percent of the measurements are under a
rate of 288ms (receiving the locality of the vehicle or sending
the trajectory recommendation is roughly 144ms). Fig. 20
describes the standard deviation for the same measurements,
where the mean value sits on 21ms (around 42ms for the
entire communication path).

In terms of processing delays, the TO manoeuvre compu-
tation is negligible in the scenario. In most of the cases, it
was not possible to obtain TO’s recommendation computation
time estimations due to the logging time granularity, which is
a positive result. The TO achieved a real-time environment
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Fig. 18. ECDF of Manoeuvre Length.

0 50 100 150 200 250 300

Trajectory Delivery Time (ms)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ti
le

(T
im

e
)

Perceeding

Following

Merging

Fig. 19. ECDF of trajectory delivery time per vehicle.

0 20 40 60 80 100 120

Vehicle Trajectory Communication Time(ms)

0

0.2

0.4

0.6

0.8

1

D
e

n
s
it
y

Fig. 20. Standard deviation of vehicle trajectory delivery time

processing, generating safe and successful manoeuvres for
vehicles in need. On the other hand, the DF was identified
as the component adding the larger computational delay. This
could be due to the use of default TCP configuration, i.e, Nagle
algorithm and Delayed Acknowledgements. Nagle algorithm
improves the efficiency of TCP by reducing the number of
packets that need to be sent over the network by delaying
some small packets and sending them all at once. Similarly,
Delayed Acknowledgement is used to reduce the number of
acknowledgements sent back. The combination of the Nagle
algorithm and the Delayed Acknowledgements could add up
to 200ms to certain packets [36], which will negatively impact
the added delay of the DF.

VII. CONCLUSION

In this paper, we presented a lane merge coordination
model based on a centralised system. It delivers trajectory
recommendations to connected vehicles on the road. Real
tests were performed using a combination of connected and
unconnected vehicles on a test track.

The Traffic Orchestrator and the Data Fusion components
were implemented and tested, presenting meaningful results.
The Dueling DQN model has been identified as the best ap-
proach compared to the DQN, obtaining more optimal perfor-
mance and providing more human-like trajectories. Predicted
trajectories provided smooth driving experience during the
lane merge with mean acceleration in the range of 0−2 m2/s.

Future works need to be carried out in order to improve
Data Fusion’s performance, in particular processing time and
transport protocol optimisation are points to be addressed.
Also, a hybrid implementation of a centralised and decen-
tralised system could be considered to encompass the lane
merging scenario. In this scenario, negotiation, communication
and cooperation could enhance the dependability whereby
catering to vehicles that may fall out of the network range.
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